Ad
related to: kaplan meier estimate of reliability definition ap math exam
Search results
Results From The WOW.Com Content Network
The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment.
This topic is called reliability theory, reliability analysis or reliability engineering in engineering, duration analysis or duration modelling in economics, and event history analysis in sociology. Survival analysis attempts to answer certain questions, such as what is the proportion of a population which will survive past a certain time?
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
Isotonic regression has applications in statistical inference.For example, one might use it to fit an isotonic curve to the means of some set of experimental results when an increase in those means according to some particular ordering is expected.
An early paper to use the Kaplan–Meier estimator for estimating censored costs was Quesenberry et al. (1989), [3] however this approach was found to be invalid by Lin et al. [4] unless all patients accumulated costs with a common deterministic rate function over time, they proposed an alternative estimation technique known as the Lin ...
Edward Lynn Kaplan (May 11, 1920 – September 26, 2006) [1] was a mathematician most famous for the Kaplan–Meier estimator, [2] developed together with Paul Meier. Biography [ edit ]
In full generality, the accelerated failure time model can be specified as [2] (|) = ()where denotes the joint effect of covariates, typically = ([+ +]). (Specifying the regression coefficients with a negative sign implies that high values of the covariates increase the survival time, but this is merely a sign convention; without a negative sign, they increase the hazard.)
I beleive that an example calculation is necessary for a comprehensive description of the Kaplan-Meier estimate. However, I agree that the section is long, and it need not be in the middle of the article; it can be moved to the end for those readers who wish to see the example calculation.