Search results
Results From The WOW.Com Content Network
In probability theory and statistics, Student's t distribution (or simply the t distribution) is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.
Once the t value and degrees of freedom are determined, a p-value can be found using a table of values from Student's t-distribution. If the calculated p -value is below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or 0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.
Multivariate normal distribution, which is the limiting case of the multivariate Student's t-distribution when . Chi distribution , the pdf of the scaling factor in the construction the Student's t-distribution and also the 2-norm (or Euclidean norm ) of a multivariate normally distributed vector (centered at zero).
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
The normal-inverse Gaussian distribution; The Pearson Type IV distribution (see Pearson distributions) The Quantile-parameterized distributions, which are highly shape-flexible and can be parameterized with data using linear least squares. The skew normal distribution; Student's t-distribution, useful for estimating unknown means of Gaussian ...
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
In statistics, the folded-t and half-t distributions are derived from Student's t-distribution by taking the absolute values of variates. This is analogous to the folded-normal and the half-normal statistical distributions being derived from the normal distribution.
The distribution should not be confused with the skew normal distribution or another asymmetric version. Indeed, the distribution here is a special case of a bi-Gaussian, whose left and right widths are proportional to 1 − λ {\displaystyle 1-\lambda } and 1 + λ {\displaystyle 1+\lambda } .