When.com Web Search

  1. Ad

    related to: simplify propositional logic calculator proof

Search results

  1. Results From The WOW.Com Content Network
  2. Conjunction elimination - Wikipedia

    en.wikipedia.org/wiki/Conjunction_elimination

    In propositional logic, conjunction elimination (also called and elimination, ∧ elimination, [1] or simplification) [2] [3] [4] is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true.

  3. List of rules of inference - Wikipedia

    en.wikipedia.org/wiki/List_of_rules_of_inference

    Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T.

  4. Rule of replacement - Wikipedia

    en.wikipedia.org/wiki/Rule_of_replacement

    In logic, a rule of replacement [1] [2] [3] is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a ...

  5. Automated theorem proving - Wikipedia

    en.wikipedia.org/wiki/Automated_theorem_proving

    Depending on the underlying logic, the problem of deciding the validity of a formula varies from trivial to impossible. For the common case of propositional logic, the problem is decidable but co-NP-complete, and hence only exponential-time algorithms are believed to exist for general proof tasks.

  6. Z3 Theorem Prover - Wikipedia

    en.wikipedia.org/wiki/Z3_Theorem_Prover

    In this example propositional logic assertions are checked using functions to represent the propositions a and b. The following Z3 script checks to see if a ∧ b ¯ ≡ a ¯ ∨ b ¯ {\displaystyle {\overline {a\land b}}\equiv {\overline {a}}\lor {\overline {b}}} :

  7. Method of analytic tableaux - Wikipedia

    en.wikipedia.org/wiki/Method_of_analytic_tableaux

    A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]

  8. Propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Propositional_calculus

    It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [ b ] [ 6 ] [ 7 ] [ 8 ] Sometimes, it is called first-order propositional logic [ 9 ] to contrast it with System F , but it should not be confused with first-order logic .

  9. Resolution (logic) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(logic)

    This resolution technique uses proof by contradiction and is based on the fact that any sentence in propositional logic can be transformed into an equivalent sentence in conjunctive normal form. [4] The steps are as follows. All sentences in the knowledge base and the negation of the sentence to be proved (the conjecture) are conjunctively ...