Ads
related to: finding the equation
Search results
Results From The WOW.Com Content Network
The equations of the circle and the other conic sections—ellipses, parabolas, and hyperbolas—are quadratic equations in two variables. Given the cosine or sine of an angle, finding the cosine or sine of the angle that is half as large involves solving a quadratic equation.
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
A difference equation is an equation where the unknown is a function f that occurs in the equation through f(x), f(x−1), ..., f(x−k), for some whole integer k called the order of the equation. If x is restricted to be an integer, a difference equation is the same as a recurrence relation
Depending on the context, solving an equation may consist to find either any solution (finding a single solution is enough), all solutions, or a solution that satisfies further properties, such as belonging to a given interval. When the task is to find the solution that is the best under some criterion, this is an optimization problem. Solving ...
The equation of a line is given by = +. The equation of the normal of that line which passes through the point P is given y = x 0 − x m + y 0 {\displaystyle y={\frac {x_{0}-x}{m}}+y_{0}} . The point at which these two lines intersect is the closest point on the original line to the point P.
Solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) – g(x). Thus root-finding algorithms can be used to solve any equation of continuous functions. However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that ...
The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation. Intersection points of cubic Bézier curve and straight line can be computed using direct cubic equation representing Bézier curve.
In numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. Edmond Halley was an English mathematician and astronomer who introduced the method now called by his name. The algorithm is second in the class of Householder's methods, after Newton's method.