Search results
Results From The WOW.Com Content Network
Trapezoid special cases. The orange figures also qualify as parallelograms. A right trapezoid (also called right-angled trapezoid) has two adjacent right angles. [13] Right trapezoids are used in the trapezoidal rule for estimating areas under a curve. An acute trapezoid has two adjacent acute angles on its longer base edge.
Special cases of isosceles trapezoids. Rectangles and squares are usually considered to be special cases of isosceles trapezoids though some sources would exclude them. [3] Another special case is a 3-equal side trapezoid, sometimes known as a trilateral trapezoid [4] or a trisosceles trapezoid.
A tangential trapezoid. In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel.
Any non-self-crossing quadrilateral that has an axis of symmetry must be either a kite, with a diagonal axis of symmetry; or an isosceles trapezoid, with an axis of symmetry through the midpoints of two sides. These include as special cases the rhombus and the rectangle respectively, and the square, which is a special case of both. [1]
A special trapezoid is an isosceles trapezoid with three equal sides, each longer than the fourth side, inscribed in the curve with a vertex ordering consistent with the clockwise ordering of the curve itself. Its size is the length of the part of the curve that extends around the three equal sides.
Still in crystallography, the deltoid dodecahedron [11] has 12 congruent non-twisted kite faces, six order-4 vertices and eight order-3 vertices (the rhombic dodecahedron is a special case). This is not to be confused with the hexagonal trapezohedron , which also has 12 congruent kite faces, [ 8 ] but two order-6 apices (i.e. poles) and two ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Help; Learn to edit; Community portal; Recent changes; Upload file
This formula cannot be used if the quadrilateral is a right kite, since the denominator is zero in that case. If M, N are the midpoints of the diagonals, and E, F are the intersection points of the extensions of opposite sides, then the area of a bicentric quadrilateral is given by