When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    foot per hour per second: fph/s1 ft/(h⋅s) = 8.4 6 × 10 −5 m/s 2: foot per minute per second: fpm/s1 ft/(min⋅s) = 5.08 × 10 −3 m/s 2: foot per second squared: fps 2: ≡ 1 ft/s 2 = 3.048 × 10 −1 m/s 2: gal; galileo: Gal ≡ 1 cm/s 2 = 10 −2 m/s 2: inch per minute per second: ipm/s1 in/(min⋅s) = 4.2 3 × 10 −4 m ...

  3. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    Saturn V Moon rocket just after launch and the gravity of Neptune where atmospheric pressure is about Earth's 1.14 g: Bugatti Veyron from 0 to 100 km/h in 2.4 s 1.55 g [b] Gravitron amusement ride 2.5–3 g: Gravity of Jupiter at its mid-latitudes and where atmospheric pressure is about Earth's 2.528 g: Uninhibited sneeze after sniffing ground ...

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [ 2 ] [ 3 ] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2 ), [ 4 ] depending on altitude , latitude , and ...

  5. Conversion of units - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_units

    For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below: = . Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the ...

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 (metres per second squared, which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet per second per second") approximately. A coherent set of units for g, d, t and v is essential.

  7. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4] This quantity is denoted variously as g n, g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2)), [5] g 0, or simply g (which is also used for the variable local value).

  8. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    G is the universal gravitational constant (G ≈ 6.67×10 −11 m 3 ·kg −1 ·s2) g = GM/d 2 is the local gravitational acceleration (or the surface gravity , when d = r ). The value GM is called the standard gravitational parameter , or μ , and is often known more accurately than either G or M separately.

  9. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3s2.