Search results
Results From The WOW.Com Content Network
In organic chemistry, GM2 is a type of ganglioside. G refers to ganglioside, the M is for monosialic (as in it has one sialic acid), and 2 refers to the fact that it was the second monosialic ganglioside discovered. It is associated with GM2 gangliosidoses such as Tay–Sachs disease. [1]
The functions of gangliosides as specific determinants suggest its important role in the growth and differentiation of tissues as well as in carcinogenesis. It has been found that tumor formation can induce the synthesis of a new complement of ganglioside, and very low concentrations of a specific ganglioside can induce differentiation of ...
This enzyme catalyses the formation of the gangliosides (i.e. sialic-acid-containing glycosphingolipids) GM2, GD2 and SM2 from GM3, GD3 and SM3, respectively. References [ edit ]
GM2-gangliosidosis, AB variant is a rare, autosomal recessive metabolic disorder that causes progressive destruction of nerve cells in the brain and spinal cord. Mutations in the GM2A gene cause AB variant. The GM2A gene provides instructions for making a protein called the GM2 activator.
Function [ edit ] The protein encoded by this gene is a small glycolipid transport protein which acts as a substrate specific co-factor for the lysosomal enzyme β-hexosaminidase A . β-hexosaminidase A, together with GM2 ganglioside activator, catalyzes the degradation of the ganglioside GM2 , and other molecules containing terminal N-acetyl ...
Tay–Sachs disease occurs when hexosaminidase A loses its ability to function. People with Tay–Sachs disease are unable to remove the GalNAc residue from the G M2 ganglioside, and as a result, they end up storing 100 to 1000 times more G M2 gangliosides in the brain than the unaffected person. Over 100 different mutations have been ...
GM2 and GD2 gangliosides are sialic acid-containing glycosphingolipids. GalNAc-T is the enzyme involved in the biosynthesis of G(M2) and G(D2) glycosphingolipids. GalNAc-T catalyzes the transfer of GalNAc into G(M3) and G(D3) by a beta-1,4 linkage, resulting in the synthesis of G(M2) and G(D2), respectively. [6]
Sandhoff disease is a lysosomal genetic, lipid storage disorder caused by the inherited deficiency to create functional beta-hexosaminidases A and B. [1] [2] These catabolic enzymes are needed to degrade the neuronal membrane components, ganglioside GM2, its derivative GA2, the glycolipid globoside in visceral tissues, [1] and some oligosaccharides.