Search results
Results From The WOW.Com Content Network
The interpolation polynomial passes through all four control points, and each scaled basis polynomial passes through its respective control point and is 0 where x corresponds to the other three control points. In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of ...
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation.Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function.
In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]
The value of the polynomial at an arbitrary point can be found by repeated linear interpolation along each coordinate axis. Equivalently, it is a weighted mean of the vertex values, where the weights are the Lagrange interpolation polynomials. These weights also constitute a set of generalized barycentric coordinates for the hyperrectangle.
In the mathematical field of numerical analysis, Runge's phenomenon (German:) is a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.
Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue.
For any given finite set of data points, there is only one polynomial of least possible degree that passes through all of them. Thus, it is appropriate to speak of the "Newton form", or Lagrange form, etc., of the interpolation polynomial. However, different methods of computing this polynomial can have differing computational efficiency.