Search results
Results From The WOW.Com Content Network
The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics.
[24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...
In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]
Maxwell's equations (in partial differential form) are modified to central-difference equations, discretized, and implemented in software. The equations are solved in a cyclic manner: the electric field is solved at a given instant in time, then the magnetic field is solved at the next instant in time, and the process is repeated over and over ...
Electromagnetic behavior is governed by Maxwell's equations, and all parasitic extraction requires solving some form of Maxwell's equations. That form may be a simple analytic parallel plate capacitance equation or may involve a full numerical solution for a complex 3D geometry with wave propagation.
The inhomogeneous Maxwell equation leads to the continuity equation: =, = implying conservation of charge. Maxwell's laws above can be generalised to curved spacetime by simply replacing partial derivatives with covariant derivatives:
As the holidays approach, many people get curious about reindeer. Have you ever wondered how fast they can run? Well, they may not be able to pull a sleigh around the world in a single night, but ...
In it, Maxwell derived the equations of electromagnetism in conjunction with a "sea" of "molecular vortices" which he used to model Faraday's lines of force. Maxwell had studied and commented on the field of electricity and magnetism as early as 1855/56 when "On Faraday's Lines of Force" [ 2 ] was read to the Cambridge Philosophical Society .