Search results
Results From The WOW.Com Content Network
Let 'arc AB' denote an arc whose two extremities are A and B of a circle with center 'O'. If a perpendicular BM is dropped from B to OA, then: jyā of arc AB = BM; koti-jyā of arc AB = OM; utkrama-jyā of arc AB = MA; If the radius of the circle is R and the length of arc AB is s, the angle subtended by arc AB at O measured in radians is θ ...
More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc. For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints. If an angle is subtended by a straight or curved segment, the segment is said to subtend the angle.
Transit of mercury chord across the sun. In the field of astronomy the term chord typically refers to a line crossing an object which is traversed during an occultation event. . By taking accurate measurements of the start and end times of the event, in conjunction with the known location of the observer and the object's orbit, the length of the chord can be determined giving an indication of ...
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
Parallax is an angle subtended by a line on a point. In the upper diagram, the Earth in its orbit sweeps the parallax angle subtended on the Sun. The lower diagram shows an equal angle swept by the Sun in a geostatic model. A similar diagram can be drawn for a star except that the angle of parallax would be minuscule.
Given a circle whose center is point O, choose three points V, C, D on the circle. Draw lines VC and VD: angle ∠DVC is an inscribed angle. Now draw line OV and extend it past point O so that it intersects the circle at point E. Angle ∠DVC intercepts arc DC on the circle. Suppose this arc includes point E within it.
The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle.
For arcs of more than 60°, the chord is less than the arc, until an arc of 180° is reached, when the chord is only 120. The fractional parts of chord lengths were expressed in sexagesimal (base 60) numerals. For example, where the length of a chord subtended by a 112° arc is reported to be 99,29,5, it has a length of