Search results
Results From The WOW.Com Content Network
Logical equality is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false or both operands are true. The truth table of p EQ q (also written as p = q, p ↔ q, Epq, p ≡ q, or p == q) is as follows: The Venn diagram of A EQ B (red part is true)
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
Classical propositional logic is a truth-functional logic, [3] in that every statement has exactly one truth value which is either true or false, and every logical connective is truth functional (with a correspondent truth table), thus every compound statement is a truth function. [4] On the other hand, modal logic is non-truth-functional.
A truth table is a semantic proof method used to determine the truth value of a propositional logic expression in every possible scenario. [92] By exhaustively listing the truth values of its constituent atoms, a truth table can show whether a proposition is true, false, tautological, or contradictory. [93] See § Semantic proof via truth tables.
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.