When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  3. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Table of Shapes Section Sub-Section Sup-Section Name Algebraic Curves ¿ Curves ¿ Curves: Cubic Plane Curve: Quartic Plane Curve: Rational Curves: Degree 2: Conic Section(s) Unit Circle: Unit Hyperbola: Degree 3: Folium of Descartes: Cissoid of Diocles: Conchoid of de Sluze: Right Strophoid: Semicubical Parabola: Serpentine Curve: Trident ...

  4. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.

  5. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids , prisms (and other polyhedrons ), cubes , cylinders , cones (and truncated cones ).

  6. Disdyakis triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Disdyakis_triacontahedron

    It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place. If the bipyramids, the gyroelongated bipyramids, and the trapezohedra are excluded, the disdyakis triacontahedron has the most faces of any other strictly convex polyhedron where every face of the polyhedron has the same ...

  7. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. [1] A polyhedron is considered to be convex if: [2] The shortest path between any two of its vertices lies either within its interior or on its boundary. None of its faces are coplanar—they do not share the same plane and do not ...

  8. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron.

  9. Kepler–Poinsot polyhedron - Wikipedia

    en.wikipedia.org/wiki/Kepler–Poinsot_polyhedron

    Likewise where three such lines intersect at a point that is not a corner of any face, these points are false vertices. The images below show spheres at the true vertices, and blue rods along the true edges. For example, the small stellated dodecahedron has 12 pentagram faces with the central pentagonal part hidden inside

  1. Related searches corbettmaths faces edges vertices of 3d shapes video scratch garden kids

    geometry of a face4 dimensional face geometry
    solid geometry facegeometry of a face example