Ad
related to: antenna gain vs gain
Search results
Results From The WOW.Com Content Network
When considering an antenna's directional pattern, gain with respect to a dipole does not imply a comparison of that antenna's gain in each direction to a dipole's gain in that direction. Rather, it is a comparison between the antenna's gain in each direction to the peak gain of the dipole (1.64). In any direction, therefore, such numbers are 2 ...
The term gain has a different meaning in antenna design; antenna gain is the ratio of radiation intensity from a directional antenna to / (mean radiation intensity from a lossless antenna). Graph of the input v i ( t ) {\displaystyle v_{i}(t)} (blue) and output voltage v o ( t ) {\displaystyle v_{o}(t)} (red) of an ideal linear amplifier with a ...
An antenna designer must take into account the application for the antenna when determining the gain. High-gain antennas have the advantage of longer range and better signal quality, but must be aimed carefully in a particular direction. Low-gain antennas have shorter range, but the orientation of the antenna is inconsequential.
The commonly quoted antenna "gain", meaning the peak value of the gain pattern (radiation pattern), is found to be 1.5~1.76 dBi, lower than practically any other antenna configuration. Comparison with the short dipole
Note that for a given antenna feedpoint impedance, an antenna's gain or increases according to the square of , so that the effective length for an antenna relative to different wave directions follows the square root of the gain in those directions. But since changing the physical size of an antenna inevitably changes the impedance (often by a ...
Patch antenna gain pattern. A directional antenna or beam antenna is an antenna which radiates or receives greater radio wave power in specific directions. Directional antennas can radiate radio waves in beams, when greater concentration of radiation in a certain direction is desired, or in receiving antennas receive radio waves from one specific direction only.
An antenna's directivity is greater than its gain by an efficiency factor, radiation efficiency. [1] Directivity is an important measure because many antennas and optical systems are designed to radiate electromagnetic waves in a single direction or over a narrow-angle.
Here, the gain and effective area of antenna 2 are fixed, because the orientation of this antenna is fixed with respect to the first. Now for a given disposition of the antennas, the reciprocity theorem requires that the power transfer is equally effective in each direction, i.e.