Search results
Results From The WOW.Com Content Network
Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility.
The reinforcement is often steel rebar (mesh, spiral, bars and other forms). Structural fibers of various materials are available. Concrete can also be prestressed (reducing tensile stress ) using internal steel cables (tendons), allowing for beams or slabs with a longer span than is practical with reinforced concrete alone.
However, measurement of the resistance between a rebar and a single probe at the concrete surface is sometimes done in conjunction with electrochemical measurements. Resistivity strongly affects corrosion rates and electrochemical measurements require an electrical connection to the rebar. It is convenient to make a resistance measurement with ...
Rebar has been placed atop a temporary wooden formwork deck prior to pouring concrete. The large horizontal rebar "cages" will be encased within a beam, while several thick vertical rebar stubs will stick out of the pour to form the base of a future column. Concrete is a material that is very strong in compression, but relatively weak in tension.
The Wood–Armer method is a structural analysis method based on finite element analysis used to design the reinforcement for concrete slabs. [1] This method provides simple equations to design a concrete slab based on the output from a finite element analysis software.
A corrugated slab is designed when the concrete is poured into a corrugated steel tray, more commonly called decking. This steel tray improves strength of the slab, and prevents the slab from bending under its own weight. The corrugations run in one direction only. A ribbed slab gives considerably more strength in one direction. This is ...
Reinforcing rebar is placed axially in the column to provide additional axial stiffness. Accounting for the additional stiffness of the steel, the nominal loading capacity P n for the column in terms of the maximum compressive stress of the concrete f c ' , the yield stress of the steel f y , the gross cross section area of the column A g , and ...
The rebound reading will be affected by the orientation of the hammer: when used oriented upward (for example, on the underside of a suspended slab), gravity will increase the rebound distance of the mass, and vice versa for a test conducted on a floor slab. Schmidt hammer measurements are on an arbitrary scale ranging from 10 to 100.