Search results
Results From The WOW.Com Content Network
A structural load or structural action is a mechanical load (more generally a force) applied to structural elements. [1] [2] A load causes stress, deformation, displacement or acceleration in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements.
EN 1991-1-1 gives design guidance and actions for the structural design of buildings and civil engineering works including some geotechnical aspects for the following subjects: Densities of construction materials and stored materials. Self-weight of construction works. Imposed loads for buildings.
1.0 x Dead Load + 1.0 x Live Load. Different load cases would be used for different loading conditions. For example, in the case of design for fire a load case of 1.0 x Dead Load + 0.8 x Live Load may be used, as it is reasonable to assume everyone has left the building if there is a fire.
These calculations are performed for a series of load combinations applied to the structure, as specified by the relevant design code. The following tables show some example load combinations from different codes. (Note that it is important to ensure that the design factors and load cases used in a design are consistently applied from a single ...
In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement).
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site. [2] They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety.
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.