Search results
Results From The WOW.Com Content Network
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
This page was last edited on 26 September 2009, at 23:24 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Least common multiple; Lowest common denominator This page was last edited on 5 February 2012, at 02:07 (UTC). Text is available under the Creative Commons ...
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.
The least common multiple of a and b is equal to their product ab, i.e. lcm(a, b) = ab. [4] As a consequence of the third point, if a and b are coprime and br ≡ bs (mod a), then r ≡ s (mod a). [5] That is, we may "divide by b" when working modulo a.
Lowest common denominator, the lowest common multiple of the denominators of a set of fractions Greatest common divisor , the largest positive integer that divides each of the integers Topics referred to by the same term