Search results
Results From The WOW.Com Content Network
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor). lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and ...
Here, 36 is the least common multiple of 12 and 18. Their product, 216, is also a common denominator, but calculating with that denominator involves larger numbers:
Least common multiple, a function of two integers; Living Computer Museum; Life cycle management, management of software applications in virtual machines or in containers; Logical Computing Machine, another name for a Turing machine
This page was last edited on 26 September 2009, at 23:24 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The lowest common divisor is a term often mistakenly used to refer to: Lowest common denominator , the lowest common multiple of the denominators of a set of fractions Greatest common divisor , the largest positive integer that divides each of the integers
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case λ of the product is the least common multiple of the λ of the prime power factors.