Ads
related to: examples of square root functions
Search results
Results From The WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
Notations expressing that f is a functional square root of g are f = g [1/2] and f = g 1/2 [citation needed] [dubious – discuss], or rather f = g 1/2 (see Iterated function#Fractional_iterates_and_flows,_and_negative_iterates), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
A subadditive function is a function:, having a domain A and an ordered codomain B that are both closed under addition, with the following property: ,, (+) + ().. An example is the square root function, having the non-negative real numbers as domain and codomain: since , we have: + +.
For example, if one computes the integer square root of 2000000 using the algorithm above, one obtains the sequence In total 13 iteration steps are needed. Although Heron's method converges quadratically close to the solution, less than one bit precision per iteration is gained at the beginning.
A more familiar principal branch function, limited to real numbers, is that of a positive real number raised to the power of 1/2. For example, take the relation y = x 1/2, where x is any positive real number. This relation can be satisfied by any value of y equal to a square root of x (either positive or negative).
A simple case arises in taking the square root of a positive real number. For example, 4 has two square roots: 2 and −2; of these the positive root, 2, is considered the principal root and is denoted as 4 . {\displaystyle {\sqrt {4}}.}