Search results
Results From The WOW.Com Content Network
In his theory, the longitudinal mass = and the transverse mass =, where is the Lorentz factor and is the rest mass of the electron. [5] The concept of (transverse) electromagnetic mass m T {\displaystyle m_{T}} , which was based on specific models of the electron, was later transmuted into the purely kinematical concept of relativistic mass ...
When an object is immersed in a liquid, the liquid exerts an upward force, which is known as the buoyant force, that is proportional to the weight of the displaced liquid. The sum force acting on the object, then, is equal to the difference between the weight of the object ('down' force) and the weight of displaced liquid ('up' force).
The magnetic Lorentz force v × B drives a current along the conducting radius to the conducting rim, and from there the circuit completes through the lower brush and the axle supporting the disc. This device generates an emf and a current, although the shape of the "circuit" is constant and thus the flux through the circuit does not change ...
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [1] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2]
For electrons or electron holes in a solid, the effective mass is usually stated as a factor multiplying the rest mass of an electron, m e (9.11 × 10 −31 kg). This factor is usually in the range 0.01 to 10, but can be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials , or anywhere from zero to infinity ...
In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges an electron experiences by the nucleus. It is denoted by Z eff . The term "effective" is used because the shielding effect of negatively charged electrons prevent higher energy electrons from experiencing the full ...
A theoretical treatment of the electron-helium interaction was developed by Cole and Cohen in 1969 [5] and, independently, by Shikin in 1970. [6] An electron close to the surface of liquid helium experiences an attractive force due to the formation of a weak (~0.01e) image charge in the dielectric liquid. However, the electron is prevented from ...
where M is the molar mass of the substance (usually given in SI units of grams per mole) and v is the valency of the ions. For Faraday's first law, M, F, v are constants; thus, the larger the value of Q , the larger m will be.