When.com Web Search

  1. Ads

    related to: water pump flow rate calculation

Search results

  1. Results From The WOW.Com Content Network
  2. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  3. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    Q is the rate of flow (expressed in US gallons per minute), SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure ...

  4. Centrifugal pump selection and characteristics - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_pump_selection...

    Volume flow rate (Q), specifies the volume of fluid flowing through the pump per unit time. Thus, it gives the rate at which fluid travels through the pump. Given the density of the operating fluid, mass flow rate (ṁ) can also be used to obtain the volume flow rate. The relationship between the mass flow rate and volume flow rate (also known ...

  5. Affinity laws - Wikipedia

    en.wikipedia.org/wiki/Affinity_laws

    The affinity laws (also known as the "Fan Laws" or "Pump Laws") for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements ...

  6. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.

  7. Peristaltic pump - Wikipedia

    en.wikipedia.org/wiki/Peristaltic_pump

    The flow rate is an important parameter for a pump. The flow rate in a peristaltic pump is determined by many factors, such as: Tube inner diameter – higher flow rate with larger inner diameter. Pump-head outer diameter – higher flow rate with larger outer diameter. Pump-head rotational speed – higher flow rate with higher speed.

  8. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.