Search results
Results From The WOW.Com Content Network
A common-path interferometer is a class of interferometer in which the reference beam and sample beam travel along the same path. Fig. 4 illustrates the Sagnac interferometer, the fibre optic gyroscope, the point diffraction interferometer, and the lateral shearing interferometer. Other examples of common path interferometer include the Zernike ...
A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave.
Some examples: Bose–Einstein condensates can exhibit interference fringes. Atomic populations show interference in a Ramsey interferometer. Photons, atoms, electrons, neutrons, and molecules have exhibited interference in double-slit interferometers.
For example, the Wind Imaging Interferometer, WINDII, [24] on the Upper Atmosphere Research Satellite, UARS, (launched on September 12, 1991) measured the global wind and temperature patterns from 80 to 300 km by using the visible airglow emission from these altitudes as a target and employing optical Doppler interferometry to measure the small ...
Grating-Coupled Interferometry schematics. GCI is based on phase-shifting waveguide interferometry.Light of the sensing arm of the interferometer is coupled into a monomode waveguide through a first grating, and undergoes a phase change until it reaches a second grating, depending on the local refractive index within the evanescent field (see image).
A common-path interferometer is a class of interferometers in which the reference beam and sample beams travel along the same path. Examples include the Sagnac interferometer, Zernike phase-contrast interferometer, and the point diffraction interferometer.
Interferometric synthetic aperture radar, abbreviated InSAR (or deprecated IfSAR), is a radar technique used in geodesy and remote sensing.This geodetic method uses two or more synthetic aperture radar (SAR) images to generate maps of surface deformation or digital elevation, using differences in the phase of the waves returning to the satellite [1] [2] [3] or aircraft.
The smearing is a problem for long integration times or very separated telescopes. Mostly an issue in radioastronomy, it severely limits the usable field of view of observations in very long baseline interferometry.