Ads
related to: exponents and powers ncert solutions pdf
Search results
Results From The WOW.Com Content Network
As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.
The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
Numbers of the form 31·16 n always require 16 fourth powers. 68 578 904 422 is the last known number that requires 9 fifth powers (Integer sequence S001057, Tony D. Noe, Jul 04 2017), 617 597 724 is the last number less than 1.3 × 10 9 that requires 10 fifth powers, and 51 033 617 is the last number less than 1.3 × 10 9 that requires 11.
Legal experts believe the unknown female celebrity tied to the Jay-Z and Sean "Diddy" Combs rape lawsuit has sought her own representation with attorneys.
An interpretation of Plato's number is a solution for k = 3. For this special case of m = 1, some of the known solutions satisfying the proposed constraint with n ≤ k, where terms are positive integers, hence giving a partition of a power into like powers, are: [3] k = 3 3 3 + 4 3 + 5 3 = 6 3 k = 4 95800 4 + 217519 4 + 414560 4 = 422481 4 ...