Search results
Results From The WOW.Com Content Network
The shear strength of soil depends on the effective stress, the drainage conditions, the density of the particles, the rate of strain, and the direction of the strain. For undrained, constant volume shearing, the Tresca theory may be used to predict the shear strength, but for drained conditions, the Mohr–Coulomb theory may be used.
The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety.
Different criteria can be used to define the "shear strength" and the "yield point" for a soil element from a stress–strain curve. One may define the peak shear strength as the peak of a stress–strain curve, or the shear strength at critical state as the value after large strains when the shear resistance levels off.
Other advantages of the fall cone test include the alternative to estimate the undrained shear strength of a soil based on the fall cone factor K. [2] In the Fall cone test, a stainless steel cone of a standardized weight and tip angle is positioned so that its tip just touches a soil sample. The cone is released for a determined period of time ...
It's the point at which the soil cannot sustain any additional load without undergoing continuous deformation, in a manner similar to the behaviour of fluids. Certain properties of the soil, like porosity, shear strength, and volume, reach characteristic values. These properties are intrinsic to the type of soil and its initial conditions. [1]
One common tool advanced during CPT testing is a geophone set to gather seismic shear wave and compression wave velocities. This data helps determine the shear modulus and Poisson's ratio at intervals through the soil column for soil liquefaction analysis and low-strain soil strength analysis. Engineers use the shear wave velocity and shear ...
In soil mechanics, dilatancy or shear dilatancy [1] is the volume change observed in granular materials when they are subjected to shear deformations. [ 2 ] [ 3 ] This effect was first described scientifically by Osborne Reynolds in 1885/1886 [ 4 ] [ 5 ] and is also known as Reynolds dilatancy .
A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil [1] [2] or rock [2] material, or of discontinuities in soil or rock masses. [2] [3] The U.S. and U.K. standards defining how the test should be performed are ASTM D 3080, AASHTO T236 and BS 1377-7:1990, respectively.