Search results
Results From The WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
If for example PE(0,0) calculates in the first step, PE(0,1) chooses first. The selection of k := (i + j) mod n for PE(i,j) satisfies this constraint for the first step. In the first step we distribute the input matrices between the processors based on the previous rule.
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
Freivalds' algorithm (named after Rūsiņš Mārtiņš Freivalds) is a probabilistic randomized algorithm used to verify matrix multiplication. Given three n × n matrices A {\displaystyle A} , B {\displaystyle B} , and C {\displaystyle C} , a general problem is to verify whether A × B = C {\displaystyle A\times B=C} .
The cross product operation is an example of a vector rank function because it operates on vectors, not scalars. Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing ...
Matrix chain multiplication is a well-known example that demonstrates utility of dynamic programming. For example, engineering applications often have to multiply a chain of matrices. It is not surprising to find matrices of large dimensions, for example 100×100. Therefore, our task is to multiply matrices ,,....
Initially, these subroutines used hard-coded loops for their low-level operations. For example, if a subroutine needed to perform a matrix multiplication, then the subroutine would have three nested loops. Linear algebra programs have many common low-level operations (the so-called "kernel" operations, not related to operating systems). [14]