Search results
Results From The WOW.Com Content Network
An X-ray filter (or compensating filter) is a device placed in front of an X-ray source in order to reduce the intensity of particular wavelengths from its spectrum and selectively alter the distribution of X-ray wavelengths within a given beam before reaching the image receptor. [1]
X-ray reflectivity (sometimes known as X-ray specular reflectivity, X-ray reflectometry, or XRR) is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers.
Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object.Applications of radiography include medical ("diagnostic" radiography and "therapeutic radiography") and industrial radiography.
X-ray optics is the branch of optics dealing with X-rays, rather than visible light.It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.
Natural color X-ray photogram of a wine scene. Note the edges of hollow cylinders as compared to the solid candle. William Coolidge explains medical imaging and X-rays.. An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays.
Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. [1] The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition.
The DQE is generally expressed in terms of Fourier-based spatial frequencies as: [10] = = ()where u is the spatial frequency variable in cycles per millimeter, q is the density of incident x-ray quanta in quanta per square millimeter, G is the system gain relating q to the output signal for a linear and offset-corrected detector, T(u) is the system modulation transfer function, and W(u) is the ...
An illustration of the heel effect in an x-ray tube. In X-ray tubes, the heel effect or, more precisely, the anode heel effect is a variation of the intensity of X-rays emitted by the anode depending on the direction of emission along the anode-cathode axis. X-rays emitted toward the anode are less intense than those emitted perpendicular to ...