When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_distribution

    Boltzmann's distribution is an exponential distribution. Boltzmann factor ⁠ ⁠ (vertical axis) as a function of temperature T for several energy differences ε i − ε j.. In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution [1]) is a probability distribution or probability measure that gives the probability that a system will be in a certain ...

  3. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    The Boltzmann constant (k B or k) is the proportionality factor that relates the average relative thermal energy of particles in a gas with the thermodynamic temperature of the gas. [2] It occurs in the definitions of the kelvin (K) and the gas constant , in Planck's law of black-body radiation and Boltzmann's entropy formula , and is used in ...

  4. kT (energy) - Wikipedia

    en.wikipedia.org/wiki/KT_(energy)

    kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on ⁠ E ...

  5. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The Boltzmann equation can be used to determine how physical quantities change, such as heat energy and momentum, when a fluid is in transport. One may also derive other properties characteristic to fluids such as viscosity , thermal conductivity , and electrical conductivity (by treating the charge carriers in a material as a gas). [ 2 ]

  6. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    In the case of degenerate energy levels, we can write the partition function in terms of the contribution from energy levels (indexed by j) as follows: =, where g j is the degeneracy factor, or number of quantum states s that have the same energy level defined by E j = E s.

  7. Thermodynamic beta - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_beta

    This link is provided by Boltzmann's fundamental assumption written as S = k B ln ⁡ Ω , {\displaystyle S=k_{\rm {B}}\ln \Omega ,} where k B is the Boltzmann constant , S is the classical thermodynamic entropy, and Ω is the number of microstates.

  8. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan , who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

  9. Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_machine

    A Boltzmann machine, like a Sherrington–Kirkpatrick model, is a network of units with a total "energy" (Hamiltonian) defined for the overall network. Its units produce binary results. Boltzmann machine weights are stochastic. The global energy in a Boltzmann machine is identical in form to that of Hopfield networks and Ising models: