When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface; that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, an ellipsoid is ...

  3. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    Deformed nuclear shapes occur as a result of the competition between electromagnetic repulsion between protons, surface tension and quantum shell effects. Spheroids are common in 3D cell cultures. Rotating equilibrium spheroids include the Maclaurin spheroid and the Jacobi ellipsoid. Spheroid is also a shape of archaeological artifacts.

  4. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Table of Shapes Section Sub-Section Sup-Section Name Algebraic Curves ¿ Curves ¿ Curves: Cubic Plane Curve: Quartic Plane Curve: Rational Curves: Degree 2: Conic Section(s) Unit Circle: Unit Hyperbola: Degree 3: Folium of Descartes: Cissoid of Diocles: Conchoid of de Sluze: Right Strophoid: Semicubical Parabola: Serpentine Curve: Trident ...

  5. Superellipsoid - Wikipedia

    en.wikipedia.org/wiki/Superellipsoid

    Superellipsoid collection with exponent parameters, created using POV-Ray.Here, e = 2/r, and n = 2/t (equivalently, r = 2/e and t = 2/n). [1]In mathematics, a superellipsoid (or super-ellipsoid) is a solid whose horizontal sections are superellipses (Lamé curves) with the same squareness parameter , and whose vertical sections through the center are superellipses with the squareness parameter .

  6. Figure of the Earth - Wikipedia

    en.wikipedia.org/wiki/Figure_of_the_Earth

    It is the regular geometric shape that most nearly approximates the shape of the Earth. A spheroid describing the figure of the Earth or other celestial body is called a reference ellipsoid. The reference ellipsoid for Earth is called an Earth ellipsoid. An ellipsoid of revolution is uniquely defined by two quantities.

  7. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids , prisms (and other polyhedrons ), cubes , cylinders , cones (and truncated cones ).

  8. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    The shape of an ellipsoid of revolution is determined by the shape parameters of that ellipse. The semi-major axis of the ellipse, a, becomes the equatorial radius of the ellipsoid: the semi-minor axis of the ellipse, b, becomes the distance from the centre to either pole. These two lengths completely specify the shape of the ellipsoid.

  9. Map projection of the triaxial ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Map_projection_of_the_tri...

    In geodesy, a map projection of the triaxial ellipsoid maps Earth or some other astronomical body modeled as a triaxial ellipsoid to the plane. Such a model is called the reference ellipsoid. In most cases, reference ellipsoids are spheroids, and sometimes spheres. Massive objects have sufficient gravity to overcome their own rigidity and ...