When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modal matrix - Wikipedia

    en.wikipedia.org/wiki/Modal_matrix

    In linear algebra, the modal matrix is used in the diagonalization process involving eigenvalues and eigenvectors. [ 1 ] Specifically the modal matrix M {\displaystyle M} for the matrix A {\displaystyle A} is the n × n matrix formed with the eigenvectors of A {\displaystyle A} as columns in M {\displaystyle M} .

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The eigenvectors of the covariance matrix associated with a large set of normalized pictures of faces are called eigenfaces; this is an example of principal component analysis. They are very useful for expressing any face image as a linear combination of some of them.

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  5. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  6. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  7. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    Let us take = [], then = [] with eigenvalues , and the corresponding eigenvectors = = [], = = [], so that the Ritz values are , and the Ritz vectors are ~ ~ = = [], ~ ~ = = []. We observe that each one of the Ritz vectors is exactly one of the eigenvectors of A {\displaystyle A} for the given V {\displaystyle V} as well as the Ritz values give ...

  8. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  9. Rayleigh quotient - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient

    As stated in the introduction, for any vector x, one has (,) [,], where , are respectively the smallest and largest eigenvalues of .This is immediate after observing that the Rayleigh quotient is a weighted average of eigenvalues of M: (,) = = = = where (,) is the -th eigenpair after orthonormalization and = is the th coordinate of x in the eigenbasis.