Search results
Results From The WOW.Com Content Network
Venous oxygen saturation (SvO 2) is the percentage of oxygenated hemoglobin returning to the right side of the heart. It can be measured to see if oxygen delivery meets the tissues' demands. SvO 2 typically varies between 60% and 80%. [9] A lower value indicates that the body is in lack of oxygen, and ischemic diseases occur.
The color of human blood ranges from bright red when oxygenated to a darker red when deoxygenated. [2] It owes its color to hemoglobin, to which oxygen binds. Deoxygenated blood is darker due to the difference in shape of the red blood cell when oxygen binds to haemoglobin in the blood cell (oxygenated) versus does not bind to it (deoxygenated).
The heart pumps blood to all parts of the body providing nutrients and oxygen to every cell, and removing waste products. The left heart pumps oxygenated blood returned from the lungs to the rest of the body in the systemic circulation. The right heart pumps deoxygenated blood to the lungs in the pulmonary circulation.
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
Arterial blood is the oxygenated blood in the circulatory system found in the pulmonary vein, the left chambers of the heart, and in the arteries. [1] It is bright red in color, while venous blood is dark red in color (but looks purple through the translucent skin). It is the contralateral term to venous blood. [citation needed]
The systemic circulation then transports oxygen to the body and returns carbon dioxide and relatively deoxygenated blood to the heart for transfer to the lungs. [8] The right heart collects deoxygenated blood from two large veins, the superior and inferior venae cavae. Blood collects in the right and left atrium continuously. [8]
The arteriovenous oxygen difference is usually taken by comparing the difference in the oxygen concentration of oxygenated blood in the femoral, brachial, or radial artery and the oxygen concentration in the deoxygenated blood from the mixed supply found in the pulmonary artery (as an indicator of the typical mixed venous supply). [citation needed]
De-oxygenated blood leaves the heart, goes to the lungs, and then enters back into the heart. [2] De-oxygenated blood leaves through the right ventricle through the pulmonary artery. [2] From the right atrium, the blood is pumped through the tricuspid valve (or right atrioventricular valve) into the right ventricle.