Search results
Results From The WOW.Com Content Network
For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast). In an exceptionally stiff material such as diamond , sound travels at 12,000 m/s (39,370 ft/s), [ 2 ] – about 35 times its speed in air and about the fastest it can travel under ...
1.44 minutes, or 86.4 seconds. Also marketed as a ".beat" by the Swatch corporation. moment: 1/40 solar hour (90 s on average) Medieval unit of time used by astronomers to compute astronomical movements, length varies with the season. [4] Also colloquially refers to a brief period of time. centiday 0.01 d (1 % of a day) 14.4 minutes, or 864 ...
5.4 × 10 83 Qs (1.7 × 10 106 years): The approximate lifespan of a supermassive black hole with a mass of 20 trillion solar masses [21] 10 10 10 76.66 {\displaystyle 10^{10^{10^{76.66}}}} Qs: The scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing an isolated black hole of stellar mass [ 22 ...
Angles in the hours ( h), minutes ( m), and seconds ( s) of time measure must be converted to decimal degrees or radians before calculations are performed. 1 h = 15°; 1 m = 15′; 1 s = 15″ Angles greater than 360° (2 π ) or less than 0° may need to be reduced to the range 0°−360° (0–2 π ) depending upon the particular calculating ...
A light-minute is 60 light-seconds, and so the average distance between Earth and the Sun is 8.317 light-minutes. The average distance between Pluto and the Sun (34.72 AU [5]) is 4.81 light-hours. [6] Humanity's most distant artificial object, Voyager 1, has an interstellar velocity of 3.57 AU per year, [7] or 29.7 light-minutes per year. [8]
1.67 minutes (or 1 minute 40 seconds) 10 3: kilosecond: 1 000: 16.7 minutes (or 16 minutes and 40 seconds) 10 6: megasecond: 1 000 000: 11.6 days (or 11 days, 13 hours, 46 minutes and 40 seconds) 10 9: gigasecond: 1 000 000 000: 31.7 years (or 31 years, 252 days, 1 hour, 46 minutes, 40 seconds, assuming that there are 7 leap years in the interval)
Some 1980s 8-bit Commodore computers, such as the PET / VIC-20 / C64, had a jiffy of 1/60 second, which was not dependent on the mains AC or video vertical refresh rate. [9] A timer in the computer creates the 60 Hz rate, causing an interrupt service routine to be executed every 1/60 second, incrementing a 24-bit jiffy counter, scanning the ...
TT differs from Geocentric Coordinate Time (TCG) by a constant rate. Formally it is defined by the equation = +, where TT and TCG are linear counts of SI seconds in Terrestrial Time and Geocentric Coordinate Time respectively, is the constant difference in the rates of the two time scales, and is a constant to resolve the epochs (see below).