Search results
Results From The WOW.Com Content Network
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.
Particles are often associated with high loads of toxins which attach to the surface. As these toxins are passed up the food chain they accumulate in fatty tissue and become increasingly concentrated in predators (see bioaccumulation). Very little is known about the dynamics of particles, especially when they are re-suspended by dredging. They ...
OMZs are known to contain the largest amount of methane in the open ocean. [25] Methanogens can also oxidize methane as they have the genes to do so, however this requires oxygen which they obtain from photosynthetic organisms in the upper anoxic zone. [25] Ciliates may also aid methanogens through symbiosis to help facilitate methanogenesis. [26]
Marine chemistry, also known as ocean chemistry or chemical oceanography, is the study of the chemical composition and processes of the world’s oceans, including the interactions between seawater, the atmosphere, the seafloor, and marine organisms. [2]
Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor.These particles either have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea, or they are biogenic deposits from marine organisms or from ...
Marine microbenthos are microorganisms that live in the benthic zone of the ocean – that live near or on the seafloor, or within or on surface seafloor sediments. The word benthos comes from Greek, meaning "depth of the sea". Microbenthos are found everywhere on or about the seafloor of continental shelves, as well as in deeper waters, with ...
Along these divergent zones, the ocean surface is typically clear of debris since diverging currents force material out of this zone and into adjacent converging zones. At the surface the circulation will set a current from the divergence zone to the convergence zone and the spacing between these zones are of the order of 1–300 m (3–1,000 ft).
In OMZs oxygen concentration drops to levels <10 nM at the base of the oxycline and can remain anoxic for over 700 m depth. [7] This lack of oxygen can be reinforced or increased due to physical processes changing oxygen supply such as eddy-driven advection, [7] sluggish ventilation, [8] increases in ocean stratification, and increases in ocean temperature which reduces oxygen solubility.