When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. X-ray tube - Wikipedia

    en.wikipedia.org/wiki/X-ray_tube

    Solid-anode microfocus X-ray tubes are in principle very similar to the Coolidge tube, but with the important distinction that care has been taken to be able to focus the electron beam into a very small spot on the anode. Many microfocus X-ray sources operate with focus spots in the range 5-20 μm, but in the extreme cases spots smaller than 1 ...

  3. Crookes tube - Wikipedia

    en.wikipedia.org/wiki/Crookes_tube

    Crookes X-ray tube from around 1910 Another Crookes x-ray tube. The device attached to the neck of the tube (right) is an "osmotic softener". When the voltage applied to a Crookes tube is high enough, around 5,000 volts or greater, [16] it can accelerate the electrons to a high enough velocity to create X-rays when they hit the anode or the glass wall of the tube.

  4. Electron beam computed tomography - Wikipedia

    en.wikipedia.org/wiki/Electron_beam_computed...

    In EBCT, the X-ray tube itself is large and stationary, and partially surrounds the imaging circle. Rather than moving the tube itself, electron-beam focal point (and hence the X-ray source point) is rapidly swept along a tungsten anode in the tube, tracing a large circular arc on its inner surface.

  5. Straton tube - Wikipedia

    en.wikipedia.org/wiki/Straton_tube

    With rotating envelope tubes, the entire vacuum tube rotates with respect to the anode axis, versus rotating anode tubes, in which the target disk rotates inside a stationary vacuum tube. The target cools by conduction rather than radiation. Heat storage is less important, and waiting times are eliminated. [1]

  6. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    The simplest and cheapest variety of sealed X-ray tube has a stationary anode (the Crookes tube) and runs with ~2 kW of electron beam power. The more expensive variety has a rotating-anode type source that runs with ~14 kW of e-beam power.

  7. Heel effect - Wikipedia

    en.wikipedia.org/wiki/Heel_effect

    In X-ray tubes, the heel effect or, more precisely, the anode heel effect is a variation of the intensity of X-rays emitted by the anode depending on the direction of emission along the anode-cathode axis. X-rays emitted toward the anode are less intense than those emitted perpendicular to the cathode–anode axis or toward the cathode. The ...

  8. Machlett Laboratories - Wikipedia

    en.wikipedia.org/wiki/Machlett_Laboratories

    The Machlett X-ray tube was patented in April 1934; one of its tubes, at the University of Melbourne's School of Physics, is from 1937. These X-ray tubes may have been used by Professor T.H Laby's X-ray group, which was a priority research topic there.

  9. Anode ray - Wikipedia

    en.wikipedia.org/wiki/Anode_ray

    Anode ray tube, turned-off condition. An anode ray (also positive ray or canal ray) is a beam of positive ions that is created by certain types of gas-discharge tubes. They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. [1] Later work on anode rays by Wilhelm Wien and J. J. Thomson led ...