When.com Web Search

  1. Ads

    related to: arithmetic progression pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  3. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    The numbers of the form a + nd form an arithmetic progression, +, +, +, …, and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends Euclid's theorem that there are infinitely many prime numbers (of the form 1 + 2n).

  4. Szemerédi's theorem - Wikipedia

    en.wikipedia.org/wiki/Szemerédi's_theorem

    In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, ErdÅ‘s and Turán conjectured [1] that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.

  5. Problems involving arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Problems_involving...

    The sequence of primes numbers contains arithmetic progressions of any length. This result was proven by Ben Green and Terence Tao in 2004 and is now known as the Green–Tao theorem. [3] See also Dirichlet's theorem on arithmetic progressions. As of 2020, the longest known arithmetic progression of primes has length 27: [4]

  6. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  7. Roth's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Roth's_Theorem_on...

    Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...

  8. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    The notion of an arithmetic progression makes sense in arbitrary -modules, but the construction of a topology on them relies on closure under intersection. Instead, the correct generalization builds a topology out of ideals of a Dedekind domain . [ 16 ]

  9. Salem–Spencer set - Wikipedia

    en.wikipedia.org/wiki/Salem–Spencer_set

    This sequence is the lexicographically first infinite Salem–Spencer set. [5] Another infinite Salem–Spencer set is given by the cubes. 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ... (sequence A000578 in the OEIS) It is a theorem of Leonhard Euler that no three cubes are in arithmetic progression. [6]