When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian blur - Wikipedia

    en.wikipedia.org/wiki/Gaussian_blur

    The difference between a small and large Gaussian blur. In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce image noise and reduce detail.

  3. Difference of Gaussians - Wikipedia

    en.wikipedia.org/wiki/Difference_of_Gaussians

    When utilized for image enhancement, the difference of Gaussians algorithm is typically applied when the size ratio of kernel (2) to kernel (1) is 4:1 or 5:1. In the example images, the sizes of the Gaussian kernels employed to smooth the sample image were 10 pixels and 5 pixels.

  4. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    In Image processing, each element in the matrix represents a pixel attribute such as brightness or color intensity, and the overall effect is called Gaussian blur. The Gaussian filter is non-causal, which means the filter window is symmetric about the origin in the time domain. This makes the Gaussian filter physically unrealizable.

  5. Canny edge detector - Wikipedia

    en.wikipedia.org/wiki/Canny_edge_detector

    The image after a 5×5 Gaussian mask has been passed across each pixel. Since all edge detection results are easily affected by the noise in the image, it is essential to filter out the noise to prevent false detection caused by it. To smooth the image, a Gaussian filter kernel is convolved with the image.

  6. Speeded up robust features - Wikipedia

    en.wikipedia.org/wiki/Speeded_up_robust_features

    SURF uses square-shaped filters as an approximation of Gaussian smoothing. (The SIFT approach uses cascaded filters to detect scale-invariant characteristic points, where the difference of Gaussians (DoG) is calculated on rescaled images progressively.) Filtering the image with a square is much faster if the integral image is used:

  7. Smoothing - Wikipedia

    en.wikipedia.org/wiki/Smoothing

    In image processing and computer vision, smoothing ideas are used in scale space representations. The simplest smoothing algorithm is the "rectangular" or "unweighted sliding-average smooth". This method replaces each point in the signal with the average of "m" adjacent points, where "m" is a positive integer called the "smooth width".

  8. Comparison gallery of image scaling algorithms - Wikipedia

    en.wikipedia.org/wiki/Comparison_gallery_of...

    The resulting image is larger than the original, and preserves all the original detail, but has (possibly undesirable) jaggedness. The diagonal lines of the "W", for example, now show the "stairway" shape characteristic of nearest-neighbor interpolation. Other scaling methods below are better at preserving smooth contours in the image.

  9. Median filter - Wikipedia

    en.wikipedia.org/wiki/Median_filter

    Median filtering is one kind of smoothing technique, as is linear Gaussian filtering. All smoothing techniques are effective at removing noise in smooth patches or smooth regions of a signal, but adversely affect edges. Often though, at the same time as reducing the noise in a signal, it is important to preserve the edges.

  1. Related searches gaussian smoothing in image processing python module 8 pdf answers list

    gaussian kernel imagegaussian filter image
    gaussian image blurdifference of gaussian image