Search results
Results From The WOW.Com Content Network
Inadequate drainage around a building can lead to excessive soil moisture, exerting pressure on the foundation. This can result in movement, heaving, or settling. Large trees near a building can have extensive root systems that extract moisture from the soil, causing it to shrink and destabilize the foundation.
Transpiration: the movement of water from root systems, through a plant, and exit into the air as water vapor. This exit occurs through stomata in the plant. Rate of transpiration can be influenced by factors including plant type, soil type, weather conditions and water content, and also cultivation practices. [ 6 ] :
Transpiration of water in xylem Stoma in a tomato leaf shown via colorized scanning electron microscope The clouds in this image of the Amazon Rainforest are a result of evapotranspiration. Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers.
Transpiration is the movement of water through a plant and out of its leaves and other aerial parts into the atmosphere. This movement is driven by solar energy. [4] In the tallest trees, such as Sequoia sempervirens, the water rises well over 100 metres from root-tip to canopy leaves. Such trees also exploit evaporation to keep the surface cool.
Moisture condenses on the interiors of buildings due to specific interactions between the roof and wall. Leaks most commonly occur on flat-roofed buildings. [4]: 328 Certain building materials and mechanisms can be used to prevent condensation from occurring in these areas, therefore reducing structural dampness and potential mold infestation.
Excess moisture in buildings expose occupants to fungal spores, cell fragments, or mycotoxins. [48] Infants in homes with mold have a much greater risk of developing asthma and allergic rhinitis. [48] More than half of adult workers in moldy/humid buildings develop nasal or sinus symptoms due to mold exposure. [48]
Water is pulled by capillary action due to the adhesion force of water to the soil solids, producing a suction gradient from wet towards drier soil [50] and from macropores to micropores. [51] The so-called Richards equation allows calculation of the time rate of change of moisture content in soils due to the movement of water in unsaturated ...
The driving force of moisture movement is chemical potential. However, it is not always easy to relate chemical potential in wood to commonly observable variables, such as temperature and moisture content (Keey et al., 2000). Moisture in wood moves within the wood as liquid or vapour through several types of passageways, based on the nature of ...