Search results
Results From The WOW.Com Content Network
Stokes' theorem. It is named after Sir George Gabriel Stokes (1819–1903), although the first known statement of the theorem is by William Thomson (Lord Kelvin) and appears in a letter of his to Stokes. The theorem acquired its name from Stokes' habit of including it in the Cambridge prize examinations. In 1854 he asked his students to prove ...
Examples include Hubble's law, which was derived by Georges Lemaître two years before Edwin Hubble; the Pythagorean theorem, which was known to Babylonian mathematicians before Pythagoras; and Halley's Comet, which was observed by astronomers since at least 240 BC (although its official designation is due to the first ever mathematical ...
List of misnamed theorems; ... Khinchin's theorem (probability) Kronecker's theorem ... Stokes's theorem (vector calculus, differential topology)
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
Bertrand's ballot theorem proved using André's reflection method, which states the probability that the winning candidate in an election stays in the lead throughout the count. It was first published by W. A. Whitworth in 1878, nine years before Joseph Louis François Bertrand ; Désiré André 's proof did not use reflection, though ...
It should only contain pages that are Probability theorems or lists of Probability theorems, as well as subcategories containing those things (themselves set categories). Topics about Probability theorems in general should be placed in relevant topic categories .
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.