Search results
Results From The WOW.Com Content Network
Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control. Eukaryotic transcription proceeds in three sequential stages: initiation, elongation, and termination. [1]
Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.
Eukaryotic initiation factors (eIFs) are proteins or protein complexes involved in the initiation phase of eukaryotic translation.These proteins help stabilize the formation of ribosomal preinitiation complexes around the start codon and are an important input for post-transcription gene regulation.
The first step in initiation is formation of the pre-initiation complex, 48S PIC. The small ribosomal subunit and various eukaryotic initiation factors are recruited to the mRNA 5′ TL and to form the 48S PIC complex, which scans 5′ to 3′ along the mRNA transcript, inspecting each successive triplet for a functional start codon.
Unlike eukaryotes, the initiating nucleotide of nascent bacterial mRNA is not capped with a modified guanine nucleotide. The initiating nucleotide of bacterial transcripts bears a 5′ triphosphate (5′-PPP), which can be used for genome-wide mapping of transcription initiation sites. [35]
In eukaryotes, activators have a variety of different target molecules that they can recruit in order to promote gene transcription. [1] [2] They can recruit other transcription factors and cofactors that are needed in transcription initiation. [1] [2] Activators can recruit molecules known as coactivators.
Mediator interacts with the pre-initiation complex, composed of RNA Polymerase II and general transcription factors TFIIB, TFIID, TFIIE, TFIIF, and TFIIH to stabilize and initiate transcription. [12] Studies of Mediator-RNA Pol II contacts in budding yeast have emphasized the importance of TFIIB-Mediator contacts in the formation of the complex.
The transcription preinitiation complex is a large complex of proteins that is necessary for the transcription of protein-coding genes in eukaryotes and archaea. It attaches to the promoter of the DNA (e.i., TATA box) and helps position the RNA polymerase II to the gene transcription start sites, denatures the DNA, and then starts transcription.