Search results
Results From The WOW.Com Content Network
The term "2-deoxyribose" may refer to either of two enantiomers: the biologically important d-2-deoxyribose and to the rarely encountered mirror image l-2-deoxyribose. [3] d-2-deoxyribose is a precursor to the nucleic acid DNA. 2-deoxyribose is an aldopentose, that is, a monosaccharide with five carbon atoms and having an aldehyde functional group.
A deoxyribonucleotide is a nucleotide that contains deoxyribose. They are the monomeric units of the informational biopolymer , deoxyribonucleic acid ( DNA ). Each deoxyribonucleotide comprises three parts: a deoxyribose sugar ( monosaccharide ), a nitrogenous base , and one phosphoryl group . [ 1 ]
The sugar in DNA is 2-deoxyribose, which is a pentose (five-carbon) sugar. The sugars are joined by phosphate groups that form phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar rings.
DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases. Methylated forms of the major bases are most common in DNA. In viral DNA, some bases may be hydroxymethylated or glucosylated.
Nucleosides are glycosylamines that can be thought of as nucleotides without a phosphate group.A nucleoside consists simply of a nucleobase (also termed a nitrogenous base) and a five-carbon sugar (ribose or 2'-deoxyribose) whereas a nucleotide is composed of a nucleobase, a five-carbon sugar, and one or more phosphate groups.
The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate. Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate.
A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. [1] They are the molecular precursors of both DNA and RNA, which are chains of nucleotides made through the processes of DNA replication and transcription. [2]
Chemical structure of DNA, showing four nucleobase pairs produced by eight nucleotides: adenine (A) is joined to thymine (T), and guanine (G) is joined to cytosine (C). + This structure also shows the directionality of each of the two phosphate-deoxyribose backbones, or strands.