When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    The volume of a pyramid is the one-third product of the base's area and the height. The pyramid height is defined as the length of the line segment between the apex and its orthogonal projection on the base. Given that is the base's area and is the height of a pyramid, the volume of a pyramid is: [25] =.

  3. Augmented triangular prism - Wikipedia

    en.wikipedia.org/wiki/Augmented_triangular_prism

    An augmented triangular prism with edge length has a surface area, calculated by adding six equilateral triangles and two squares' area: [2] +. Its volume can be obtained by slicing it into a regular triangular prism and an equilateral square pyramid, and adding their volume subsequently: [ 2 ] 2 2 + 3 3 12 a 3 ≈ 0.669 a 3 . {\displaystyle ...

  4. Biaugmented pentagonal prism - Wikipedia

    en.wikipedia.org/wiki/Biaugmented_pentagonal_prism

    Its volume can be obtained by slicing it into a regular pentagonal prism and an equilateral square pyramid, and adding their volume subsequently: [2] + + +. The dihedral angle of an augmented pentagonal prism can be calculated by adding the dihedral angle of an equilateral square pyramid and the regular pentagonal prism: [ 4 ]

  5. Biaugmented triangular prism - Wikipedia

    en.wikipedia.org/wiki/Biaugmented_triangular_prism

    A biaugmented triangular prism with edge length has a surface area, calculated by adding ten equilateral triangles and one square's area: [2] +. Its volume can be obtained by slicing it into a regular triangular prism and two equilateral square pyramids, and adding their volumes subsequently: [ 2 ] 59 144 + 1 6 a 3 ≈ 0.904 a 3 ...

  6. Elongated triangular pyramid - Wikipedia

    en.wikipedia.org/wiki/Elongated_triangular_pyramid

    An elongated triangular pyramid with edge length has a height, by adding the height of a regular tetrahedron and a triangular prism: [4] (+). Its surface area can be calculated by adding the area of all eight equilateral triangles and three squares: [2] (+), and its volume can be calculated by slicing it into a regular tetrahedron and a prism, adding their volume up: [2]: ((+)).

  7. Triaugmented triangular prism - Wikipedia

    en.wikipedia.org/wiki/Triaugmented_triangular_prism

    A triaugmented triangular prism with edge length has surface area [10], the area of 14 equilateral triangles. Its volume, [10] +, can be derived by slicing it into a central prism and three square pyramids, and adding their volumes.

  8. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Its surface area is four times the area of an equilateral triangle: = =. [7] Its volume can be ascertained similarly as the other pyramids, one-third of the base times height. Because the base is an equilateral, it is: [ 7 ] V = 1 3 ⋅ ( 3 4 a 2 ) ⋅ 6 3 a = a 3 6 2 ≈ 0.118 a 3 . {\displaystyle V={\frac {1}{3}}\cdot \left({\frac {\sqrt {3 ...

  9. Square pyramid - Wikipedia

    en.wikipedia.org/wiki/Square_pyramid

    If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all equilateral. It is called an equilateral square pyramid, an example of a Johnson solid.