Search results
Results From The WOW.Com Content Network
The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...
Assuming SI units, F is measured in newtons (N), m 1 and m 2 in kilograms (kg), r in meters (m), and the constant G is 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. [12] The value of the constant G was first accurately determined from the results of the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798 ...
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...
One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass.
When an object's weight (its gravitational force) is expressed in "kilograms", this actually refers to the kilogram-force (kgf or kg-f), also known as the kilopond (kp), which is a non-SI unit of force. All objects on the Earth's surface are subject to a gravitational acceleration of approximately 9.8 m/s 2.
We can convert a mass expressed in kilograms to the equivalent mass expressed in metres by multiplying by the conversion factor G/c 2. For example, the Sun's mass of 2.0 × 10 30 kg in SI units is equivalent to 1.5 km. This is half the Schwarzschild radius of a one solar mass black hole. All other conversion factors can be worked out by ...
Potential energy with respect to gravity, close to Earth, per unit mass: gh, where g is the acceleration due to gravity (standardized as ≈9.8 m/s 2) and h is the height above the reference level (giving J/kg when g is in m/s 2 and h is in m).
An overview of ranges of mass. To help compare different orders of magnitude, the following lists describe various mass levels between 10 −67 kg and 10 52 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe.