Search results
Results From The WOW.Com Content Network
With a symmetrical rocket or missile, the directional stability in yaw is the same as the pitch stability; it resembles the short period pitch oscillation, with yaw plane equivalents to the pitch plane stability derivatives. For this reason, pitch and yaw directional stability are collectively known as the "weathercock" stability of the missile.
The yaw axis has its origin at the center of gravity and is directed towards the bottom of the aircraft, perpendicular to the wings and to the fuselage reference line. Motion about this axis is called yaw. A positive yawing motion moves the nose of the aircraft to the right. [1] [2] The rudder is the primary control of yaw. [3]
Propeller walk (also known as propeller effect, wheeling effect, paddle wheel effect, asymmetric thrust, asymmetric blade effect, transverse thrust, prop walk) is the term for a propeller's tendency to rotate about a vertical axis (also known as yaw motion). The rotation is in addition to the forward or backward acceleration.
Using ailerons causes adverse yaw, meaning the nose of the aircraft yaws in a direction opposite to the aileron application. When moving the aileron control to bank the wings to the left, adverse yaw moves the nose of the aircraft to the right. Adverse yaw is most pronounced in low-speed aircraft with long wings, such as gliders.
This is typically controlled by the rudder at the rear of the airplane. Roll (bank) – in which one wing of the airplane moves up and the other moves down. This is typically controlled by ailerons on the wings of the airplane. Coordinated flight requires the pilot to use pitch, roll and yaw control simultaneously. See also flight dynamics.
The 707 made a successful emergency landing at John F. Kennedy International Airport. Pacific Southwest Airlines Flight 182, September 25, 1978. The Boeing 727 collided with a Cessna 172 single engined aircraft over San Diego, CA. The damage to the 727's right wing control surfaces and control system hydraulics made the aircraft uncontrollable.
Ailerons had begun to replace wing warping as the most common means of achieving lateral control as early as 1911, especially in biplane designs. Monoplane wings of the period were much more flexible, and proved more amenable to wing warping – but even for monoplane designs, ailerons became the norm after 1915.
A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is ...