Search results
Results From The WOW.Com Content Network
The traditional notations used in the previous section do not distinguish the original function : from the image-of-sets function : (); likewise they do not distinguish the inverse function (assuming one exists) from the inverse image function (which again relates the powersets). Given the right context, this keeps the notation light and ...
In mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map :, the inverse image functor is a functor from the category of sheaves on Y to the category of sheaves on X.
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
exceptional inverse image Rf! : D(Sh(Y)) → D(Sh(X)). The exclamation mark is often pronounced "shriek" (slang for exclamation mark), and the maps called "f shriek" or "f lower shriek" and "f upper shriek"—see also shriek map. The exceptional inverse image is in general defined on the level of derived categories only.
Method of inversion, the image of a harmonic function in a sphere (or plane); see Method of image charges; Multiplicative inverse, the reciprocal of a number (or any other type of element for which a multiplication function is defined) Matrix inversion, an operation on a matrix that results in its multiplicative inverse; Model inversion; Set ...
The local inverse is a kind of inverse function or matrix inverse used in image and signal processing, as well as in other general areas of mathematics. The concept of a local inverse came from interior reconstruction of CT [clarification needed] images. One interior reconstruction method first approximately reconstructs the image outside the ...
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
Usually, such a point source contributes a small area of fuzziness to the final image. If this function can be determined, it is then a matter of computing its inverse or complementary function, and convolving the acquired image with that. The result is the original, undistorted image.