When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The determinant of a square matrix is a number associated with the matrix, which is fundamental for the study of a square matrix; for example, a square matrix is invertible if and only if it has a nonzero determinant and the eigenvalues of a square matrix are the roots of a polynomial determinant.

  3. Matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Matrix_analysis

    In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...

  4. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The parallelogram defined by the rows of the above matrix is the one with vertices at (0, 0), (a, b), (a + c, b + d), and (c, d), as shown in the accompanying diagram. The absolute value of ad − bc is the area of the parallelogram, and thus represents the scale factor by which areas are transformed by A.

  5. Matrix representation - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation

    Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.

  6. Unitary group - Wikipedia

    en.wikipedia.org/wiki/Unitary_group

    The unitary group is a subgroup of the general linear group GL(n, C), and it has as a subgroup the special unitary group, consisting of those unitary matrices with determinant 1. In the simple case n = 1 , the group U(1) corresponds to the circle group , isomorphic to the set of all complex numbers that have absolute value 1, under multiplication.

  7. Category of matrices - Wikipedia

    en.wikipedia.org/wiki/Category_of_matrices

    In other words, we can only multiply matrices and when the number of rows of matches the number of columns of . One can keep track of this fact by declaring an n × m {\displaystyle n\times m} matrix to be of type m → n {\displaystyle m\to n} , and similarly a p × q {\displaystyle p\times q} matrix to be of type q → p {\displaystyle q\to p} .

  8. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Any rotation matrix of size n × n can be constructed as a product of at most ⁠ n(n − 1) / 2 ⁠ such rotations. In the case of 3 × 3 matrices, three such rotations suffice; and by fixing the sequence we can thus describe all 3 × 3 rotation matrices (though not uniquely) in terms of the three angles used, often called Euler angles.

  9. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Several important classes of matrices are subsets of each other. This article lists some important classes of matrices used in mathematics, science and engineering. A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called entries. Matrices have a long history of both study and application, leading to ...