Search results
Results From The WOW.Com Content Network
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Lectures on Theoretical Physics is a six-volume series of physics textbooks translated from Arnold Sommerfeld's classic German texts Vorlesungen über Theoretische Physik. The series includes the volumes Mechanics , Mechanics of Deformable Bodies , Electrodynamics , Optics , Thermodynamics and Statistical Mechanics , and Partial Differential ...
Thermal physics, generally speaking, is the study of the statistical nature of physical systems from an energetic perspective. Starting with the basics of heat and temperature, thermal physics analyzes the first law of thermodynamics and second law of thermodynamics from the statistical perspective, in terms of the number of microstates corresponding to a given macrostate.
The Feynman Lectures on Physics is a physics textbook based on a great number of lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". [1] The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1964.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
Schematic figure of a Brownian ratchet. In the philosophy of thermal and statistical physics, the Brownian ratchet or Feynman–Smoluchowski ratchet is an apparent perpetual motion machine of the second kind (converting thermal energy into mechanical work), first analysed in 1912 as a thought experiment by Polish physicist Marian Smoluchowski. [1]
GOP lawmakers are framing the IRS's free direct tax-filing system as an example of the "weaponization of government against Americans."
This equation shows that in thermodynamics intensive properties are not independent but related, making it a mathematical statement of the state postulate. When pressure and temperature are variable, only I − 1 {\displaystyle I-1} of I {\displaystyle I} components have independent values for chemical potential and Gibbs' phase rule follows.