Search results
Results From The WOW.Com Content Network
The binomial distribution converges towards the Poisson distribution as the number of trials goes to infinity while the product np converges to a finite limit. Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B(n, p) of the binomial distribution if n is sufficiently large and p is
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
If X is a binomial (n, p) random variable then (n − X) is a binomial (n, 1 − p) random variable. If X has cumulative distribution function F X, then the inverse of the cumulative distribution F X (X) is a standard uniform (0,1) random variable; If X is a normal (μ, σ 2) random variable then e X is a lognormal (μ, σ 2) random variable.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
The cumulative distribution function ... states that the entropy of a Poisson binomial distribution is a concave function of the success ... Toggle the table of ...
Let and be respectively the cumulative probability distribution function and the probability density function of the ( , ) standard normal distribution, then we have that [2] [4] the probability density function of the log-normal distribution is given by:
The cumulative property follows quickly by considering the cumulant-generating function: + + = [(+ +)] = ( [] []) = [] + + [] = + + (), so that each cumulant of a sum of independent random variables is the sum of the corresponding cumulants of the addends. That is, when the addends are statistically ...