Ads
related to: zener diode operation theory chart
Search results
Results From The WOW.Com Content Network
A subsurface Zener diode, also called a buried Zener, is a device similar to the surface Zener, but the doping and design is such that the avalanche region is located deeper in the structure, typically several micrometers below the oxide. Hot carriers then lose energy by collisions with the semiconductor lattice before reaching the oxide layer ...
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
When the absorber is in the primary circuit, e.g. a Zener diode (or LED) with voltage V z connected "backwards" across the primary windings, the current waveshape is a triangle with the time t open determined by the formula I p = I peak,m - V z ×T open /L p, here I peak,m being the primary current at the time the switch opens. When the ...
In the Zener diode, the concept of PIV is not applicable. A Zener diode contains a heavily doped p–n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is "clamped" to a known value (called the Zener voltage), and avalanche does not ...
Zener diode based noise source. A noise generator is a circuit that produces electrical noise (i.e., a random signal). Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters.
The transfer characteristic has exactly the same shape of the previous basic configuration, and the threshold values are the same as well. On the other hand, in the previous case, the output voltage was depending on the power supply, while now it is defined by the Zener diodes (which could also be replaced with a single double-anode Zener diode).
Here, the load current I R2 is supplied by the transistor whose base is now connected to the Zener diode. Thus the transistor's base current (I B) forms the load current for the Zener diode and is much smaller than the current through R 2. This regulator is classified as "series" because the regulating element, viz., the transistor, appears in ...
The LTZ1000 is a high-precision, ultra-stable Zener diode voltage reference originally developed by Carl Nelson for Linear Technology (now Analog Devices). It consists of a Zener reference packaged along with an integrated heater and temperature sensor designed to hold the device at a constant temperature for improved stability. [1] [2]