Ad
related to: total discharge head
Search results
Results From The WOW.Com Content Network
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
Thus, discharge head (the height which the fluid can reach after getting pumped) varies according to its operating conditions. Total Head is the difference between the height to which the fluid can rise at the outlet and the height to which it can rise at the inlet for a centrifugal pump. This is a crucial parameter for pump selection and is a ...
The discharge potential is a potential in groundwater mechanics which links the physical properties, hydraulic head, with a mathematical formulation for the energy as a function of position. The discharge potential, Φ {\textstyle \Phi } [L 3 ·T −1 ], is defined in such way that its gradient equals the discharge vector.
In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...
The affinity laws are useful as they allow the prediction of the head discharge characteristic of a pump or fan from a known characteristic measured at a different speed or impeller diameter. The only requirement is that the two pumps or fans are dynamically similar, that is, the ratios of the fluid forced are the same.
The volumetric discharge through the stream-bed can be calculated if the difference in hydraulic head is known: = where is the volumetric discharge through the stream-bed ([L 3 T −1]; m 3 s −1 or ft 3 day −1) is the hydraulic head of the river (elevation stage)
In a hydraulic circuit, net positive suction head (NPSH) may refer to one of two quantities in the analysis of cavitation: The Available NPSH (NPSH A): a measure of how close the fluid at a given point is to flashing, and so to cavitation. Technically it is the absolute pressure head minus the vapour pressure of the liquid.
is total head (m) per stage at the point of best efficiency. Note that the units used affect the specific speed value in the above equation and consistent units should be used for comparisons. Pump specific speed can be calculated using British gallons or using Metric units (m 3 /s and metres head), changing the values listed above.