Search results
Results From The WOW.Com Content Network
Bacteriophage genomes can be highly mosaic, i.e. the genome of many phage species appear to be composed of numerous individual modules. These modules may be found in other phage species in different arrangements. Mycobacteriophages, bacteriophages with mycobacterial hosts, have provided excellent examples of this mosaicism.
d'Hérelle was a self-taught microbiologist. In 1917 he discovered that "an invisible antagonist", when added to bacteria on agar, would produce areas of dead bacteria. The antagonist, now known to be a bacteriophage, could pass through a Chamberland filter. He accurately diluted a suspension of these viruses and discovered that the highest ...
Multiplicity reactivation (MR) is the process by which multiple viral genomes, each containing inactivating genome damage, interact within an infected cell to form a viable viral genome. MR was originally discovered with phage T4, but was subsequently found in phage λ (as well as in numerous other bacterial and mammalian viruses [20]).
In 1965, American microbiologist Dr. Bernard Reilly discovered the Φ29 phage in Dr. John Spizizen's lab at the University of Minnesota. [11] [12] Due to its small size and complex morphology, it has become an ideal model for the study of many processes in molecular biology, such as morphogenesis, viral DNA packaging, viral replication, and transcription.
Transduction This is an illustration of the difference between generalized transduction, which is the process of transferring any bacterial gene to a second bacterium through a bacteriophage and specialized transduction, which is the process of moving restricted bacterial genes to a recipient bacterium. While generalized transduction can occur ...
In order for the T-even phage to infect its host and begin its life cycle it must enter the first process of infection, adsorption of the phage to the bacterial cell. Adsorption is a value characteristic of phage-host pair and the adsorption of the phage on host cell surface is illustrated as a 2-stage process: reversible and irreversible.
In a 1945 study by Demerec and Fano, [4] T7 was used to describe one of the seven phage types (T1 to T7) that grow lytically on Escherichia coli. [5] Although all seven phages were numbered arbitrarily, phages with odd numbers, or T-odd phages, were later discovered to share morphological and biochemical features that distinguish them from T-even phages. [6]
Bacteriophage Mu, also known as mu phage or mu bacteriophage, is a muvirus (the first of its kind to be identified) of the family Myoviridae which has been shown to cause genetic transposition. It is of particular importance as its discovery in Escherichia coli by Larry Taylor was among the first observations of insertion elements in a genome.