Search results
Results From The WOW.Com Content Network
This page was last edited on 16 November 2024, at 12:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
ISO 18265: "Metallic materials — Conversion of hardness values" (2013) ASTM E140-12B(2019)e1: "Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness" (2019)
If HV is first expressed in N/mm 2 (MPa), or otherwise by converting from kgf/mm 2, then the tensile strength (in MPa) of the material can be approximated as σ u ≈ HV/ c, where c is a constant determined by yield strength, Poisson's ratio, work-hardening exponent and geometrical factors – usually ranging between 2 and 4. [9]
Brinell hardness is sometimes quoted in megapascals; the Brinell hardness number is multiplied by the acceleration due to gravity, 9.80665 m/s 2, to convert it to megapascals. The Brinell hardness number can be correlated with the ultimate tensile strength (UTS), although the relationship is dependent on the material, and therefore determined ...
When testing coatings, scratch hardness refers to the force necessary to cut through the film to the substrate. The most common test is Mohs scale, which is used in mineralogy. One tool to make this measurement is the sclerometer. Another tool used to make these tests is the pocket hardness tester. This tool consists of a scale arm with ...
This orders gray iron into classes which correspond with its minimum tensile strength in thousands of pounds per square inch (ksi); e.g. class 20 gray iron has a minimum tensile strength of 20,000 psi (140 MPa).
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
When testing metals, indentation hardness correlates roughly linearly with tensile strength, [1] but it is an imperfect correlation often limited to small ranges of strength and hardness for each indentation geometry. This relation permits economically important nondestructive testing of bulk metal deliveries with lightweight, even portable ...