Search results
Results From The WOW.Com Content Network
The RC time constant, denoted τ (lowercase tau), the time constant (in seconds) of a resistor–capacitor circuit (RC circuit), is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads):
A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
This means that the time constant is the time elapsed after 63% of V max has been reached Setting for t = for the fall sets V(t) equal to 0.37V max, meaning that the time constant is the time elapsed after it has fallen to 37% of V max. The larger a time constant is, the slower the rise or fall of the potential of a neuron.
The fundamental passive linear circuit elements are the resistor (R), capacitor (C) and inductor (L). These circuit elements can be combined to form an electrical circuit in four distinct ways: the RC circuit, the RL circuit, the LC circuit and the RLC circuit, with the abbreviations indicating which components are used.
For a simple one-stage low-pass RC network, [18] the 10% to 90% rise time is proportional to the network time constant τ = RC: t r ≅ 2.197 τ {\displaystyle t_{r}\cong 2.197\tau } The proportionality constant can be derived from the knowledge of the step response of the network to a unit step function input signal of V 0 amplitude:
The product τ (tau) = RC is called the time constant of the circuit. The ratio then depends on frequency, in this case decreasing as frequency increases. This circuit is, in fact, a basic (first-order) low-pass filter. The ratio contains an imaginary number, and actually contains both the amplitude and phase shift information of the filter.
the time constant of any device, such as an RC circuit; proper time in relativity; one turn: the constant ratio of a circle's circumference to its radius, with value (6.283...). [13] Kendall tau rank correlation coefficient, a measure of rank correlation in statistics; Ramanujan's tau function in number theory
An increase in this variable means the higher pole is further above the corner frequency. The y-axis is the ratio of the OCTC (open-circuit time constant) estimate to the true time constant. For the lowest pole use curve T_1; this curve refers to the corner frequency; and for the higher pole use curve T_2. The worst agreement is for τ 1 = τ 2.